miércoles, 21 de marzo de 2012

De Donde Vienen, Cual Es Su Historia?


La historia de las matemáticas es el área de estudio que abarca las investigaciones sobre los orígenes de los descubrimientos en matemáticas, de los métodos matemáticos, de la evolución de sus conceptos y también en cierto grado, de los matemáticos involucrados.
Antes de la edad moderna y la difusión del conocimiento a lo largo del mundo, los ejemplos escritos de nuevos desarrollos matemáticos salían a la luz solo en unos pocos escenarios. Los textos matemáticos más antiguos disponibles son la tablilla de barro Plimpton 322 (c. 1900 a. C.), el papiro de Moscú (c. 1850 a. C.), el papiro de Rhind (c. 1650 a. C.) y los textos védicos Shulba Sutras (c. 800 a. C.). En todos estos textos se menciona el teorema de Pitágoras, que parece ser el más antiguo y extendido desarrollo matemático después de la aritmética básica y la geometría.

Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.[cita requerida]
Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por la matemática helénica, donde se refinaron los métodos (especialmente la introducción del rigor matemático en las demostraciones) y se ampliaron los asuntos propios de esta ciencia.1 La matemática en el islam medieval, a su vez, desarrolló y extendió las matemáticas conocidas por estas civilizaciones ancestrales. Muchos textos griegos y árabes de matemáticas fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la Edad Media.
Desde tiempos ancestrales hasta la Edad Media, las ráfagas de creatividad matemática fueron seguidas, con frecuencia, por siglos de estancamiento. Pero desde el renacimiento italiano, en el siglo XVI, los nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos, fueron creciendo exponencialmente hasta el día de hoy.






Historia de la geometría y las matemáticas


La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto, Estrabón y Diodoro Sículo mientras las matemáticas o la matemática (del lat. mathematĭca, y éste del gr. μαθηματικά, derivado de μάθημα, conocimiento) es una ciencia que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones cuantitativas entre los entes abstractos (números, figuras geométricas, símbolos). Mediante las matemáticas conocemos las cantidades, las estructuras, el espacio y los cambios. Los matemáticos buscan patrones, formulan nuevas conjeturas e intentan alcanzar la verdad matemática mediante rigurosas deducciones. Éstas les permiten establecer los axiomas y las definiciones apropiados para dicho fin, en este momento hablaremos algunos de los griegos que más influyeron en la evolución de estas dos ciencias..
Apolonio, quien fuera conocido como “El gran geómetra”, introdujo las nociones de parábola, elipse e hipérbola espiral. Fue célebre también por su tratado “Secciones Cónicas”. El estudio de las cónicas se refiere a las figuras que pueden obtenerse al cortar un cono cualquiera por diversos planos. Previamente a este trabajo existían estudios elementales sobre determinadas intersecciones de planos perpendiculares a las generatrices de un cono, obteniéndose elipses, parábolas o hipérbolas según que el ángulo superior del cono fuese agudo, recto u obtuso, respectivamente. Si bien no disponía de la geometría analítica todavía, Apolonio hace un tratamiento de las mismas que se le aproxima mucho. Los resultados obtenidos por Apolonio fueron los únicos que existieron hasta que Fermat y Descartes, en una de las primeras aplicaciones de la geometría analítica, retomaron el problema.  Fue también un importante fundador de la astronomía matemática griega, la cual usó modelos geométricos para explicar la teoría planetaria.
Por su parte Euclides (330-275) fue el autor de los Elementos de geometría, una de las obras más famosas de la historia del conocimiento científico. La significatividad de este trabajo, reside en su método, ya que Euclides recoge toda la obra de sus antecesores. En efecto, éste estará inspirado en la lógica deductiva de Aristóteles. Los elementos de geometría están divididos en 13 libros. El primero reúne 23 definiciones, 5 postulados y 9 nociones comunes. Las definiciones, se ocupan de delimitar los conceptos, esto es, las “entidades matemáticas” que se van a utilizar. La primera definición dirá: punto es aquello que no tiene partes”, “la línea es longitud sin latitud”. Los postulados son los primeros principios (en el sentido aristotélico) propios de la disciplina en cuestión. En este punto, las formulaciones de Euclides ponen en evidencia, la concepción de una geometría en la que los problemas se resuelven a través del trazado de figuras con regla y compás. En efecto, dice literalmente: “trazar una línea recta desde un punto cualquier a otro cualquiera” lo cual, sin duda pretende afirmar: “existe una recta y solo una que pase por dos puntos, cualesquiera que sean”. De esta forma, el problema más famoso de la época griega, el de la cuadratura del círculo, esto es, hallar con regla y compás un cuadrado cuya área sea igual al círculo dado, era imposible de resolver con el método de la regla y el compás.
Las nociones comunes expresan principios comunes a toda la ciencia y a todo razonamiento. La primera de ellas afirma: “cosas iguales a una y la misma son iguales entre sí” y la octava: “el todo es mayor que las partes”. Luego, aparecen los teoremas que son 48 en la primer aparte. El primero de ellos dice:  “Dada una recta delimitada, construir sobre ella un triángulo equilátero”. La construcción debe realizarse con regla y compás. Solo figuran “entidades” previamente definidas. La validez de la construcción se demostrará como evidente, apoyándose en las definiciones, postulados y nociones comunes. Los teoremas que se suceden, se podrán valer también de los teoremas anteriores y todos ellos concluyen con la misma fórmula: ” que es lo que se había de hacer”
Los elementos aparecen así con todo el poder de su fascinación intelectual, en ellos no se utiliza sino lo definido previamente, las “entidades matemáticas”, todos sus teoremas se basan en construcciones visuales y en la evidencia de las definiciones, postulados y nociones comunes. En suma, la obra es un gran edificio deductivo. El mérito de Euclides no fue el de hallar los teoremas sino el de haberlos integrado como eslabones de una gran cadena que conforma el sistema euclidiano.
En el bando de las matemáticas Eratóstenes (275-194) fue  un científico destacado, fue director de la famosa biblioteca de Alejandría. Se interesó por la astronomía, la historia, la geografía, la filosofía y las matemáticas. También fue poeta y crítico teatral. El logro más importante de Eratóstenes fue el de calcular por primera vez el diámetro terrestre. Para cual comparó la sombra proyectada por el sol durante solsticio de verano en dos sitios distantes: Siena y en Alejandría. El ángulo de los rayos de sol, proyecta sombras de diferente longitud, de manera tal que esto le permitió determinar que la distancia angular de estos dos puntos respecto a la circunferencia terrestre era de siete grados. Basándose entonces, en que la distancia entre ambas ciudades era (a medidas actuales) de 800 km., estimó la longitud de la circunferencia con notable exactitud.



No hay comentarios:

Publicar un comentario en la entrada